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OPTIMAL AVERAGING IN PERFORMANCE TESTS

OBJECTIVES

The purpose of this research was to develop a methodology for optimizing the
temporal stability and predictive validity of performance tests and to apply that
methodology to the Project-A, computer-administered tests.

APPROACH

Performance tests differ fundamentally from knowledge tests. 1In a knowledge
test the order in which items are administered has minor effects and is usually
ignored. In a performance test it is difficult or impossible to prevent knowledge
of results and, as a result, order of administration matters greatly. 1In the
present research a performance test is treated as a task to be practiced and test

results are analyzed as individual differences in skill acquisition and retention.
Classical test theory is also used.

PROCEDURES

The first step in the analysis is "forward averaging." It begins with the
subjects' scores on the first trial. Then each subject's scores on the first two
trials are averaged, then the first three trials, then the first four, and so on
until the last trial is reached. This series of averages is then correlated with
the corresponding series of averages from retest or a criterion to be predicted.
Oftentimes temporal stability or predictive validity increases up to an optimal
average and then decreases. When such an optimum is encountered, it means that the
test's temporal stability or predictive validity cannot be improved by lengthening
the test. It also means that the test can be shortened (back to the optimum)
without loss of stability or validity. If a forward optimum is not encountered,

forward averaging provides a basis for estimating what the effects of lengthening
the test on stability or validity would be.

Backward averaging is the reverse of forward averaging. It begins with the
last trial of practice. Then each subject's scores on the last two trials are
averaged, then the last three trials, and so on until the first trial is reached.
When backward and forward optima both occur, a simple algorithm is specified for
determining the single most predictive average of consecutive trials.

RESULTS

The predictive validity of the Project-A computer-administered tests for a
simulated Anti-Aircraft criterion task was studied over a four-month interval in a
sample of 102 college students; the four-month temporal stability of the tests was
studied concurrently in the same sample. Three of the ten Project-A tests (Choice
Reaction, Target Tracking 2, and Cannon Shoot) show a forward stability optimum.
Cannon Shoot also has high predictive validity (.59). It could have the highest
predictive validity of any test in the Project-A battery if its temporal stability
could somehow be improved. In none of these three tests, however, can temporal
stability be improved by lengthening the tests.

The predictive validity of all ten tests can be improved by optimal averaging,
in six cases significantly so. Overall, optimal averaging improves the predictive
validity of tests with validities representative of real-world, job-performance
validities from .34 to .45. Gains of this magnitude would be of major practical
importance, especially since they can be obtained at no cost in test modification or
testing time. These results, however, need to be cross-validated.
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OPTIMAL AVERAGING IN PERFORMANCE-TESTS
INTRODUCTION

The theoretical problem of performance testing

The distinction between knowledge and performance testing turns on what
one is trying to measure. A knowledge test samples what a subject knows, a
performance test what he or she can do. Plainly, this distinction is not
absolute. A mathematics test, for example, may involve not only what a
subject knows but also what he or she can do with that knowledge. A memory
search task may be facilitated if a subject has seen an unusual symbol before
and knows what it is, say, a Greek omega. Nevertheless, most tests fall
lopsidedly into one category or the other.

In a knowledge test the subject does not usually know whether he or she
is right or wrong. As a result practice effects are limited to auxiliary
aspects of the test (test-taking skills) and, while they exist, are not large
(Messick & Jungblut, 1981; Wing, 1980). In a performance test, however, it is
usually not possible to prevent the subject from obtaining some idea as to how
well or poorly he or she is doing. As a consequence, subjects tend to do
better on a test the more times it is administered to them (Bittner et al,
1983; Kennedy et al, 1981). In effect, each test administration becomes a
trial of practice.

Psychometric theory is based on knowledge tests. The unit of analysis is
an item and the order of administering the items is arbitrary. In performance
testing, however, the unit of analysis is a trial and order of administration
is not only nonarbitrary but often the only thing that distinguishes one trial
from another. In a knowledge test it is not unreasonable to suppose that mean

performance and interitem correlations are independent of order of




administration. In a performance test it is. Typically, performance improves
with practice and intertrial correlations fall into a definite pattern as a
function of order: the superdiagonal form (Jones, 1962).

The consequences of these differences for theory are drastic. It has
long been known, for example, that intertrial correlations, unlike interitem
correlations, may yield spurious results when subjected to conventional factor
analysis (Humphreys, 1960). Also, the familiar formulae for adjusting
reliability and validity for test length assume that average interitem
(intertrial) correlation, r, does not change with test Tength. 1In a
superdiagonal form, as will be seen below, r definitely does change with test
Tength. As a result, the Spearman-Brown and related formulae (Gulliksen,
1950) have to be reworked and reinterpreted if their use in performance
testing is to be helpful and not misinformative.

The practical problem of performance testing

During the Second World War performance testing based on
electromechanical apparatus (rotary pursuit, complex coordination, two-hand
tracking, and the like) was widely and successfully used in military
selection, especially for pilot training (Melton, 1947). ‘The equipment,
however, was heavy, bulky, difficult to maintain, and more difficult to
replace. By the late 1950s all three military services had abandoned
performance testing in favor of paper-and-pencil tests exclusively. Then in
the Tate 1970s the advent of microcomputers reopened the possibility of
performance testing, this time with equipment that occupied 1ittle space, did
not break down frequently, and was easily replaced when it did. At the same
time experimental psychology was undergoing a revolution of its own, as the

discipline’s central focus shifted from learning theory to cognition and




information-processing. The joint effect of these two developments was a new
generation of cognitively oriented, microcomputer-based performance tests.
The computer-administered tests in Project A are cases in point.

Unfortunately, all has nbt been clear sailing for this new generation of
performance tests. The most serious problem has been that many tests have low
reliabilities (Kyllonen, 1985). Predictive validities against real-world
criteria are still sparse, but it seems likely that oftentimes they will also
be Tow. An appropriate response to these difficulties involves more than
making and trying out new tests. What is needed is a theory of performance
tests, that is, an approach to test construction and validation that
recognizes and capitalizes upon the distinctive properties of performance
tests.

APPROACH

Superdiagonal form is one of the best established regularities in human
learning (Jones, 1962, 1969). It refers to the essentially universal tendency
for trials of practice to correlate more strongly the closer they are together
in the practice sequence. Table 1 presents a hypothetical example. The
correlation between neighboring trials is .80. If the two trials are
separated by one intervening trial, the correlation drops to .65. If two
trials intervene, the correlation drops to .50. The weakest correlation is
between the first and last trials in the sequence, in the example, .05. In a
typical motor-skills experiment, where each data point represents as much as
20 mins of practice, the superdiagonal pattern is always present and, in large
samples, usually quite regular. In correlations among individual trials of

practice, as in performance testing, the pattern may be very irregular.




Almost always, however, if correlations are averaged over groups of
consecutive trials, the pattern can still be seen.

Table 1 illustrates another point, this one directly relevant to
performance testing. In conventional test theory the Spearman-Brown (S-B)

formula (Gulliksen, 1950) states that the reliability of a test i units in
length*

2 : R

= - )

‘ I+ (F=1) R,

Table 1. Hypothetical correlations among seven trials of practice, together

with the average correlation (r,) and reliability (Ri) as calculated by the
Spearman-Brown formula up to a diven trial.

Trial
Trial 1 2 3 4 5 6 7

1 - 80 65 .50 35 20 05
2 - 80 65 .50 35 20
3 - 80 .65 50 35
4 - 80 .65 50
5 - .80 .65
6 . .80
7 ;
T, - .80 .75 .70 .65 .60 .55

R, .800  .889  .900  .903  .902  .900  .895

*As given here, the S-B formula assumes that all trials have the same
variance. This restriction can be retaxed by restating the formula in terms
of variances and covariances. For clarity of presentation, however, I will
continue to use the simpler and more familiar form.




where R1 is the reliability of a test of unit length. When i>2, R1 is taken
as the average correlation among the i units, that is, ?ﬂ. The first row at
the bottom of the table shows this average correlation for the first two
trials, the first three, out to all seven trials. As is clear from the table,
these averages decrease as one moves forward from the first to the last trial.
Since the correlations decrease along any row to the right, each new trial
adds to the average a column of correlations lower than those already in it;
hence ?]. drops a notch.

Low reliability in a knowledge test is corrigible. It may be laborious to
do, but in principle one can always lengthen the test, while maintaining the
same average inter-item correlation, and thereby improve its reliability. In a
performance test, however,'?i does not remain the same as the test is
lengthened; it decreases. The bottom row in Table 1 gives Ri as calculated by
the S-B formula for i = 1,..., 7. As i increases, ;} both decreases and is
more strongly amplified by the S-B formula. The ampiification, however, is
negatively accelerated while, in this example, the decrease in-r-"i proceeds at
a constant rate. The upshot is that Ri increases sharply at first, reaches a
maximum (at i = 4), and then decreases gently. In this case, therefore,
reliability would not be improved by lengthening the test.‘ In fact, the test
could be shortened to 4 trials with no loss of reliability.

The superdiagonal pattern in Table 1 is perfectly regular, that is,
constant within any given diagonal and regularly decreasing between diagonals.
As we have seen, however, it nevertheless tends to yield reliabilities that
increase to an optimum and then decrease gently. This tendency may be
reinforced by other considerations. As the number of trials increases, some

subjects may become fatigued or lose concentration. In addition, performance




in the presence of fatigue and wavering attention tends to be fitful and
erratfc. These changes introduce novel variance not present in earlier trials
of practice. The effect is to produce a drop in correlational level late in
practice and, therefore, to bring about a forward optimum earlier than it
would have occurred in a perfectly regular pattern.

In practice, reliability as calculated by the S-B formula from a series
of acquisition (test) trials is less interesting than temporal stability--that
is, the correlation between test and retest over appreciable periods of time
(months or years), where a subject’s score is his or her average performance
over the first i trials at test or retest. In a single test series a
perfectly regular superdiagonal pattern, like the one in Table 1, suffices to
produce a forward optimum (that is, a maximum prior to the last trial),
provided the gradient away from the superdiagonal is steep and the series is
long enough. When the subjects are tested in two well-separated series of
trials, the conditions are somewhat different. Specifically, in the square
array of correlations between test and retest the gradient along the rows to
the right must be steeper than that up the columns. In remains true, however,
that in stability as well as in reliability certain variants of superdiagonal
pattern are sufficient to produce a forward optimum. Furthermore, these
variants may be brought about by effects such as fatigue or loss of
concentration.

Forward averages may also be correlated with an external criterion. When
they are, the correlations (predictive validities) always rise at first and
sometimes reach an optimum, after which they decrease. It has long been
recognized that abilities may change with practice (Fleishman & Hempel, 1954;

Ackerman, 1987) and that, as they do, the relation of the practiced test to an




external criterion may also change. There is, therefore, no reason to be
surprised if the average of the first i trials sometimes predicts a criterion
better than the average of all trials given.

Forward optima in temporal stability and predictive validity have
important implications for the construction and validation of performance
tests. If a test shows a forward optimum in stability, the implication is
that Tengthening the test will not improve its stability. It is true that if
the test were lengthened, stability, after decreasing for a stretch of trials,
might start increasing again to a second optimum. To date, however, I have
not seen any such second increase. One does see small departures from an
increasing, level, or decreasing curve but not a second increasing trend in
the curve’s general direction. If, however, an optimum once reached will not
be exceeded or, in the worst case, not exceeded by much, then lengthening the
test will not improve its temporal stability.

If a test has not reached an optimum or asymptote with the number of
trials given, it is possible to project where the optimum would fall if the
test series were lengthened. This projection is based primarily on
extrapolating the course of'?%i, the average correlation between test and
retest trials up to test or retest trial i, from the existing series to next
and following trials. Such a projection is, of course, no better than the
extrapolation on which it is based. Still, forward averages provide an
empirical basis for decisions regarding the length of a performance test. It
can tell us when a series of trials is already Tong enough, whether it might
be shortened without loss of stability, how much it would have to be
lengthened to reach an optimum, and how much of a gain could be realized by so

lengthening it.




Once a test has been constructed, it may be used to predict performance
on numerous external criteria. At this point the issue is no longer test
construction (test length) but test scoring. The usual practice is to average
all trials given. If, however, a forward optimum in predictive validity
exists, then averaging only those trials up to and including the optimum will
yield a higher predictive validity than the usual practice. Since the
differential composition of a test may change with practice and an external
criterion may be most strongly related to those components of a test that
predominate at the beginning (say) or in the middle of a practice series,
stability and validity optima do not necessarily fall on the same trial. For
the same reasons, the optimal forward average for purposes of prediction may
vary from one external criterion to another.

Averaging from the first trial forward is only one way to generate a
series of averages from a series of test trials. Another way is to average
from the last trial backwards. The temporal stability of backward averages
can, of course, be calculated and sometimes a maximum occurs before the first
trial is reached (a backward optimum). Backward optima, however, are not
informative about how changes in test length might affect temporal stability.
A forward average of, say, 5 trials retains its meaning (refers to the same
trials) regardless of how many trials are ultimately given. A backward
average of 5 trials, however, refers to trials 6-10 if 10 trials are given and
to trials 11-15 if a total of 15 trials is given. A backward average changes
its meaning when the total number of trials changes. As a consequence, no
conclusions regarding changes in test length can be drawn from a backward

stability optimum.




Backward averages may also be correlated with an external criterion and,
when they are, the correlation (predictive validity) rises at first and may
reach an optimum prior to the first trial. In these cases, as in the
corresponding cases involving forward optima, averaging only those trials up
to and including the optimum (following it in the practice series) yields a
higher predictive validity than averaging all trials given. Backward optima
are especially helpful in improving a test’s validity when a forward validity
optimum also exists.

One final point should be noted. It may happen that 721 and, therefore,
temporal stability, take different values in different subsets of trials.
Where this happens, one may restructure the test to consist exclusively of
subsets with high values of 721, very much as in conventional item analysis.
Once such a restructuring is done, however, it should be followed (a) by
forward averaging to determine the optimal test length for temporal stability
and (b) by both forward and backward averaging to determine optimal scoring
for predictive validity.

METHODS
The Project-A Tests

Project A is a Targe, multi-year effort to improve the Armed Forces
Vocational Aptitude Battery (Eaton, Hanser, & Shields, 1985; Peterson, 1987).
Included in this effort are 10 newly developed, computer-administered
performance tests. The following brief descriptions of the 10 tests are in
the same order as the tests are administered. The number of trials a subject
receives on each test is given in Table 3.

Simple Reaction Time. The subject is instructed to place his or her

hands in the Ready position. When the word YELLOW appears in a display box,




the subject strikes the yellow key on the test panel as quickly as he or she
can. The dependent measure is average time to respond.

Choice Reaction Time. This test is much the same as Simple Reaction

Time. The major difference is that the stimulus in the display box is BLUE or
WHITE (rather than YELLOW), and the subject is instructed to strike the
corresponding blue or white key on the test panel. The dependent measure is
average time to respond on trials in which the subject makes the correct
response.

Short-Term Memory. A stimulus set, consisting of 1, 3, or 5 letters or

symbols, is presented on the display screen. Following a delay period, the
set disappears. When the probe stimulus appears, the subject must decide
whether or not it was part of the stimulus set. The dependent measure is
average time to respond on trials in which the subject makes the correct
response.

Target Tracking 1. This is a pursuit tracking test. The subject’s task

is to keep a crosshair centered within a box that moves along a path
consisting exclusively of vertical and horizontal lines. The dependent
measure is the average distance from the crosshair to the center of the target
box.

Perceptual Speed and Accuracy. This test measures a subject’s ability to
compare rapidly two stimuli presented simultaneously and determine whether
they are the same or different. The stimuli may contain 2, 5, or 9 characters
and the characters may be letters, numbers, or other symbols. The dependent
measure is average time to respond on trials where the subject’s response is

correct.




Target Tracking 2. This test is the same as Target Tracking 1, except

that the subject uses two sliding resistors instead of a joystick to control
the crosshair. The dependent measure is the same as in Target Tracking 1.

Number Memory. The subject is presented with a number on the computer

screen. When the subject presses a button, the number disappears and another
number appears along with an operation term (e.g., "Add 9" "Multiply by 3").
When the subject presses a button, another number and operation term are
presented. This procedure continues until finally a solution to the problem
is presented. The subject must then indicate whether the solution presented
is correct or incorrect. The dependent measure is total time to respond on
trials in which the subject correctly identifies the solution presented as
itself correct or incorrect.

Cannon Shoot. The subject’s task is to fire a shell from a stationary

cannon so that it hits a target moving across the cannon’s line of fire. The
dependent measure is a deviation score indicating the difference between time
of fire and optimal fire time (for example, direct hit yields a deviation
score of zero).

Target Identification. The subject is presented with a target and three

stimulus objects. The objects are pictures of tanks, planes, or helicopters.
The target is the same as one of the three stimulus objects but rotated or
reduced in size. The subject must determine which of the three stimulus
objects is the same as the target object. The dependent measure is average
time to respond on trials in which the subject makes the correct response.

Target Shoot. The subject’s task is to move a crosshair over a moving

target and then press a button to fire. The dependent measure is distance

from the crosshair to the center of the target when the subject fires.
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The Criterion Task

In addition to the Project-A tests, each subject was administered a
criterion task. This task was Anti-Aircraft, game #1 in the Atari Air-Sea
Battle cartridge (CX-2624). In this game the subject controls a gun placed
two thirds of the way from left to right at the bottom of the television
screen. Four different kinds of aircraft traverse the screen above the gun,
in different numbers, at different speeds and aititudes, and from left to
right or vice versa. The purpose of the game is to shoot down as many
aircraft as possible in a 2-min-and-16-sec game. The control devices are a
Joystick for positioning the gun and a button for firing the missile. The
missile itself was the smaller of two possible sizes (difficulty position
"A"). The dependent measure is number of aircraft shot down per game.

Anti-Aircraft is a complex psychomotor skill with a high ceiling. No
subject comes close to reaching the maximal possible performance with the
amount of testing given.

Subjects and Procedures

The subjects were 102 central Pennsylvania undergraduate college
students, 50 men and 52 women. Each subject was administered the Project-A
tests at the start of the fall semester (September, October) and then again
four months Tater at the start of the spring semester (January, February).
The Project-A tests were taken in a single sitting that lasted between 45 and
75 mins, depending on how quickly the subject responded to the tests and the
instructions that preceded them. The entire administration, both test and
retest, instructions as well as the tests themselves, was computer controlled.

In the fall, following the Project-A tests, each subject was administered

five sessions of Anti-Aircraft, each session consisting of seven games or a
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1ittle more than 16 mins of playing time. All five sessions were completed
within a ten-day period, with no more than two sessions taking place on a
given day. In the spring semester, again following the Project-A tests, each
subject was given three sessions of Anti-Aircraft with the same number of
games per session and the same conditions as to distribution as in
acquisition.
RESULTS AND DISCUSSION

Table 2 presents the temporal stabilities and predictive validities of
the 10 Project-A tests. "Temporal stability" in Table 2 refers to the
correlation between the average of all trials given at test and at retest.

Table 2. Four-month temporal stability and predictive validity for
Anti-Aircraft of the Project-A, computer-administered tests.

Temporal Predictive
Test Stability Validity
Simpie Reaction Time .505 .251
Choice Reaction Time .767 117
Short-Term Memory .694 .237
Target Tracking 1 .894 .696
Perceptual S A .726 107
Target Tracking 2 .910 .696
Number Memory .689 .333
Cannon Shoot .534 .594
Target ID .710 .196
Target Shoot .710 .510

13




"Predictive validity" refers to the correlation between the average of all
trials at test and the average score per game on Anti-Aircraft in the first
retest session.

In general, the 4-month temporal stabilities are better than might have
been expected from one-day, test-retest reliabilities with similar tests
(Kyllonen, 1985). The stabilities for Simple Reaction Time and Cannon Shoot
(.505 and .534) are too low. On the other hand, those for Target Tracking 1
and 2 (.894 and .910) are excellent. The remaining six tests all have
stabilities in the neighborhood of .70. The predictive validities for the two
tracking tests (both .696) are outstanding and those for the two shooting
tests (.595 and .510) excellent; the other six tests have low predictive
validities. Note that the predictive validity of Cannon Shoot is higher than
its temporal stability over the same period of time.

Three of the ten tests (Choice Reaction, Target Tracking 2, and Cannon
Shoot) show a forward stability optimum. The optimum stabilities, as can be
seen in Figure 1, are very little larger than what obtains when all trials
given are averaged, although the drop for Cannon Shoot from Trial 35 to Trial
36 is significant at the .06 level, one-tailed. The drop yields a z-score of
1.62 by the standard test for a difference between two correlations not
sharing a common variable and based on the same subjects (Steiger, 1980, p.
247, Equation 15). The issue with respect to these optima is their existence
or nonexistence and not their precise Tocation or how steeply the stability
curve falls away after an optimum is reached. If the optima are real (do not
result from capitalization on chance), it would make 1ittle difference if they
lay a few trials distant from where they appear in Figure 1 or if points

following an optimum were only a trifle lower than it. The implications for
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lengthening or shortening the tests would be much the same. The stability of
the three tests could not be improved by lengthening them and, if the optima
remained where they now are, Choice Reaction and Target Tracking 2 might even

be shortened a bit with no loss of temporal stability.

10
Target Tracking 2 ‘

Choice Reaction Time l

o R —

drrmtheemedhyarely e -—_—fA“-H

6k Cannon Shoot ‘

Temporal Stability

] ] ] | ] | ] ] ] ] 1 l | ] ] | ] |
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Test or Retest Trial Number (i)

Figure 1. Four-month temporal stability of forward averages (‘)'(-.,ign) for
Choice Reaction Time (n=30), Target Tracking 2 (n=18), and Canndn Shoot
(n=36), where n indicates the total number of trials given.




Cannon Shoot, however, is the most interesting of the three tests,
because in its case temporal stability appears to limit predictive validity
for Anti-Aircraft.* As already noted, the predictive validity of Cannon
Shoot is higher than its stability. In its case, therefore, one might expect
the forward stability and validity curves to follow similar courses--and so
they do. For two of the three Anti-Aircraft retest sessions Cannon Shoot
shows a forward validity optimum and in both cases at Trial 35. In this
connection, it should be noted that the drop in stability at Trial 36 could be
an "end effect" only in the Project-A retest sessions. The first time the
subjects take the Project-A tests they have no idea how long the tests are
going to last. Hence the validity optima at Trial 35 are not due to an end
effect (because the Project-A retest sessions are not involved). These
considerations do not, of course, obviate the need for cross-validation, but
just the contrary.

If, however, there really is a forward stability optimum at Trial 35 in
Cannon Shoot, the fact would force a general restructuring of the test. If
the temporal stability of Cannon Shoot could be incfeased, its predictive
validity for Anti-Aircraft might exceed that of the two tracking tests. An
optimum at Trial 35, however, precludes any such increase by increasing test
Tength. If, therefore, the optimum could be confirmed, other strategies would

have to be invoked. One could, for example, try giving the test in two

*Validity may, of course, be higher than temporal stability, if the criteria
is more reliable (stable) than the predictor. Nevertheless, stability lower
than a test’s validity may reasonably be said to limit it.
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bouts of 18 or more trials each rather than a single bout of 36 trials. One
could also look for subsets of trials on Cannon Shoot with high test-retest
correlations and restructure the test to consist exclusively of such subsets.
Six of the ten tests show forward validity optima for the first retest
session on Anti-Aircraft. Figure 2 presents results for three of these tests.
Seven tests show backward validity optima for the same criterion, but the
gains over conventional scoring are smaller than for the forward validity

optima.

Simple

Reaction Time Target Identification

Predictive Validity

AN SRS U UUUUUU N S U (SRR M S S R SN S U S E—
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Test Trial Number (i)

Figure 2. Predictive validity for Anti-Aircraft of forward averages (Xi’
i<n) for Simple Reaction Time (n=10), Number Memory (n=28), and Target
Identification (n=36), where n indicates the total number of trials given.
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By "optimal averaging" I mean finding that series of consecutive trials
which yields the best predictive validity or an acceptably large one. The
restriction to consecutive trials is helpful in reducing the total number of
distinct series that must be examined before an optimal average can be
determined. Unfortunately, it still leaves a large number. N test trials
generate N(N+1)/2 distinct series of consecutive trials. If N equals 36, that
makes 666 series and the probability of obtaining an average that is "optimal"
mainly because of upward chance variations becomes substantial.

The most straightforward way to avoid excessive capitalization on
chance is to limit the’number of series that one examines. Accordingly, in
defining an optimal validity average I have adopted the following three-
step algorithm:

1, If neither a forward nor a backward optimum exists, then the optimal
average is the average of all trials given (the conventional
average).

2, If a forward optimum exists but not a backward optimum, the optimal
average is the average of all trials from the first up to and
including the optimal trial. Similarly, if a backward optimum exists
but not a forward optimum, the optimal average is the average of all
trials from the last back to the optimal trial.

3, If both forward and backward optima exist, the average of all trials
spanned by the two optima is usually more valid than either the
forward or backward optimum. If so, the optimal average is the
spanning average. If not, the optimal average is the more valid of

the forward and backward optima.
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This algorithm requires one to examine at most 2N series. Capitalization on
chance is still involved, of course, but its extent is severely controlled.
Table 3 presents the optimal averages, so defined, for the Project-A
tests in predicting performance in the first retest session on Anti-Aircraft.
The first column contains the total number of trials given and the next two
the starting and ending trials of the optimal average. The fourth column
gives the validity of the optimal average and the next column the validity of

the conventional average. The next column, the sixth, presents the

Table 3. Optimal averages for the Project-A tests in predicting performance
in the first retest session on Anti-Aircraft.

Optimal Predictive

No. of Average Validity
Test Trials  Start End Opt. Conv. & 7 p
Simple Reaction 10 1 6 .299 .251 .048 1.47 <.08
Choice Reaction 30 28 30 .162 .117 .045 0.84 n.s.
Short-Term Memory 36 6 19 .291 ,237 .054 2.06 <.02
Target Tracking 1 18 3 18 .698 .696 .002 0.62 n.s.
Perceptual S A 36 1 9 .222 .107 .115 1.52 «<.07
Target Tracking 2 18 2 8 JI17  .096 .021 1.43 <.08
Number Memory 28 4 16 .406 .333 .073 2.05 <.03
Cannon Shoot 36 10 36 .612 .594 .018 0.59 n.s
Target ID 36 1 5 .306 .196 .110 1.94 <.03
Target Shoot 30 5 29 .521  .510 .011 0.52 n.s.
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difference (&) between the optimal and conventional validities. The
right-most column but one presents the z-score (unit normal deviate) for the
difference between two correlations sharing a common variable and based on the
same subjects (Steiger, 1980, p. 247, Equation 14). The last column is the
one-tailed significance Tevel.

Six of the tests show differences significant at the .08 level or better.
In these six tests the z-scores range from 1.43 to 2.06 and the gains
obtainable by optimal averaging from .021 to .115.

These results are for single tests. We may also ask how much difference
optimal averaging makes in the validity of best composites of the Project-A
tests. The validity of the six tests other than the two tracking and the two
shooting tests are representative of real-world, job-performance validities
(Ghiselli, 1966; Schmidt, Hunter, & Peariman, 1981). If these six tests are
scored in the usual way, they yield a multiple correlation of .413. If the
same tests are scored by optimal averages, the multiple correlation is .496.
Adjusted for shrinkage, the correlations are .344 and .446 for conventional
and optimal scoring respectively. The differences between the two multiple
correlations (not adjusted) yields a z-score of 2.03, significant at the .03
Tevel. In short, for tests with representative validities optimal scoring may
improve the validity of a test composite by as much as .10.

If composites are formed of all ten tests, the gains obtainable by optimal
averaging are very much Tess, less than .02. This result is not happenstance.
First, tests with high validity (>.5) do not benefit much from optimal

averaging. The point is best appreciated by considering a single
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predictor in relation to two criteria, one which it predicts well and the

other poorly. The validity of the test when it is i units long,

R' :;: VR./—-
¢ % £ WAL T
'4

Increasing i increases the root-ratio by the same amount for both criteria.

Hence, it takes a larger drop in the average trial validity up to trial i,
E;x’ to overcome that increase (produce an optimum) when ?kx is high than
when it is low. For example, if the root-ratio increases from 1.00 to 1.10 as
test length increases, then fo increases from .70 to .77 if ;;x = .70 but
only from .30 to .33 if ‘r;x = .30. A drop in -r".x sufficient to produce an
optimum has to be roughly twice as large in the former as in the latter case.
In terms of variance, or z-transform, the difference between the two cases is
even larger. This argument is weakened but not nullified by the tendency for
tests with high validities to have higher than average reliabilities.

Second, the gains obtainable by optimal averaging in individual tests do
not communicate themselves to composites which include highly predictive
tests. The six tests exclusive of the tracking and shooting tests account for
roughly 20% of the variance in Anti-Aircraft. The same six tests, however,
account for less than 5% of the variance in Anti-Aircraft additional to that
accounted for by the tracking and shooting tests. Optimal averaging increases
the variance accounted for by the six tests by roughly the same amount (%= 35%)
whether the four "big" predictors are included or not. But the absolute

amount of variance accounted for by the six "lesser" predictors
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drops by a factor of four when the four "big" predictors are included. Hence,
the absolute difference that optimal averaging makes drops by a factor of
approximately four.

These considerations are general. There is good reason to expect that
optimal averaging will improve the validities of tests and test composites
only in the range from .00 to .50. This, however, is precisely where the vast
majority of predictive validities lie. In practical terms, gains in
predictive validity on the order of .05 to .10 in tests designed to be used on
a mass basis for personnel assignment are important. These gains, moreover,
are a matter of scoring only and are obtainable at no cost in test
modification or testing time.

As a general approach to the construction and validation of performance
tests, optimal averaging depends mainly on analytic considerations and two
major empirical results: the superdiagonal patterning of intertrial
correlations and the tendency for a task’s differential composition to change
with practice. The particular findings reported in this paper are, however,
another matter. Even an algorithm as severely restricted as the one used to
define an "optimal average" capitalizes to some extent on favorable chance
variations. The optimal averages reported in Table 3 should, therefore, be
cross-validated.

CONCLUSIONS AND MILITARY APPLICATIONS

Any test that requires a subject to demonstrate what he or she can do
(rather than what he or she knows) qualifies as a performance test.

Therefore, tests designed to assess information-processing parameters are
performance tests. This class of tests is relevant to a broad range of

military occupational specialties, ranging from gunner or pilot to radar
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operator or typist. The advent of microcomputer technology has made
performance testing much more feasible than ever before; and the armed
services have been quick to recognize the fact, as the inclusion of ten
computer-administered performance tests in the Project-A battery makes clear.
Optimal averaging is an approach to the construction and validation of
performance tests that recognizes and capitalizes upon their distinctive
properties. In the present study, optimal averaging improved the four-month
predictive validity of the Project-A tests by amounts ranging from .02 to .12.
Improvements in this range have practical importance and can, moreover, be
realized "for nothing." It is as easy to score a test for the optimal average
as for all trials given.

Finally, there is nothing special about the criterion (Anti-Aircraft)
used in this study. If optimal averaging can improve the quality of the
Project-A tests for Anti-Aircraft, there is every reason to
believe that it can also improve the validity of the same tests for field
criteria. A general improvement, however, on the order of .05 to .10 in the
predictive validity of the Project-A, computer-administered tests would be a

significant advance in applied psychological testing and have sizable economic

benefits for the Army, as for the other armed services.
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